
Version 0.2

Part I : Configuring the Saturn compiler and the SGL.

First, after you get both the Saturn GCC compiler (Cygnus based, for MS-DOS) and the leaked SGL library, you need
to install them.

Unlike other development tools, GCC does not come bundled with it's own
IDE (acronym for Integrated Development Editor). This means that you have
to provide your own text editor. If you code in C (Saturn is not the tool to learn
how to use C) you can keep using your favorite editor.
However, if you have doubts, or want to check other choices, I recommend 2
(free) alternatives:

RHIDE is a powerfull text-based C editor, that ressembles the Borland interface. If you want to do editing in
DOS, I highly recomend this one.

EditPad products are my favorite editors for Windows. EditPad Classic has no syntax highlighting but it's
postcardware and mutch faster than EditPad Lite. Combined with the Programmers IDE, it becomes a friendly dev
enviroment for Windows.

You could also consider a commercial option such as UltraEdit. Not so expensive (around 20 bucks) and

has sintax highlight and can compile the project and even create the ISO from the GUI if you configure it too.
(thanks to Artemio Urbina for the suggestion)

As I told before, you can edit those C files with whatever you want. I often use Visual Dev Studio (the Microsoft editor
that comes bundled with their dev products) to edit, for example. Just DON’T USE COMPILE/MAKE EXE. That is an
issue that needs to be taken in consideration separately.
GCC relies on a utility called MAKE to err… make an executable. Altough it's out of the scope of this text, you should
read about make and makefiles. For now it suffices to say the SGL spares a good amount of distress, by allowing us
to just edit a tiny text file called OBJECTS and use a pre-made MAKEFILE.
Now, off to the good part. Installing.
Decompress the compiller to a directory, let's say C:\dev\. It will instantly
create a SATURN directory. Good. That wasn't very hard, was it?
Now, decompress the SGL files, in a directory like this C:\dev\SATURN\Sgl\.
Unlike the compiller, you need to add a Sgl directory.

(The follwing procedure is mentioned twice on the README directory. Obviously, you
missed it. Go, read)
 Now, off to the magic file called SETENV.BAT. You should have
one already done, and looks something like this:

REM sh-hms
SET PATH=C:\SATURN\BIN;c:\windows\command
SET GCC_EXEC_PREFIX=C:\SATURN\LIB\
SET INFOPATH=C:\SATURN\INFO
SET C_INCLUDE_PATH=C:\SATURN\include
SET CPLUS_INCLUDE_PATH=C:\SATURN\include\cxx;C:\SATURN\include
SET GO32=EMU C:\SATURN\BIN\EMU387
REM Set TMPDIR to point to a ramdisk if you have one
SET TMPDIR=C:\TMP

 Change the files so that they point to the correct places, in our case, it would be:

REM sh-hms
SET PATH=C:\dev\SATURN\BIN;c:\windows\command
SET GCC_EXEC_PREFIX=C:\dev\SATURN\LIB\
SET INFOPATH=C:\dev\SATURN\INFO
SET C_INCLUDE_PATH=C:\dev\SATURN\include
SET CPLUS_INCLUDE_PATH=C:\dev\SATURN\include\cxx;C:\Gamez\SATURN\include
REM Set TMPDIR to point to a ramdisk if you have one
SET TMPDIR=C:\TMP
(Notice I erased the SET GO32 file. If you want to compile on a old 486 or a 386, keep it)

 Now, add some SGL paths:

REM sh-hms
SET PATH=C:\dev\SATURN\BIN;c:\windows\command
SET GCC_EXEC_PREFIX=C:\dev\SATURN\LIB\;C:\dev\Saturn\
SET INFOPATH=C:\dev\SATURN\INFO
SET C_INCLUDE_PATH=C:\dev\SATURN\include;C:\dev\SATURN\Sgl\include;
C:\dev\SATURN\Sgl\Inc
SET CPLUS_INCLUDE_PATH=C:\dev\SATURN\include\cxx;C:\Gamez\SATURN\include;
C:\dev\SATURN\Sgl\include;C:\dev\SATURN\Sgl\inc
REM Set TMPDIR to point to a ramdisk if you have one
SET TMPDIR=C:\TMP
(notice that some lines wrap around in this text)

WARNING ABOUT SGL

The SGL is a leak of the official Sega
Development Library. That said, you
need to be an official Saturn game
developer to be able to use it. As SEGA
does not accept Saturn game
developers anymore, and has offically
stopped to support the Saturn console,
it's a thin ice area. This means that
Sega might try and force us to drop the
support, but has no real reason do to
so. Anyway, everything you do with the
SGL is potencially illegal, okay?

What is GCC?

GCC is a C compiller, mainly used in
*nix (Linux, Unix, FreeBSD, HP-UX)
enviorments, and it's a nice and very
supported tool. It's also a GNU product,
meaning that it's free to use and the
source is open to any developer.

 And add the following SET LIBRARY line for the Sgl library files (not needed, but just in case)

REM sh-hms
SET PATH=C:\dev\SATURN\BIN;c:\windows\command
SET GCC_EXEC_PREFIX=C:\dev\SATURN\LIB\;C:\dev\Saturn\
SET INFOPATH=C:\dev\SATURN\INFO
SET LIBRARY_PATH=C:\dev\SATURN\lib;C:\dev\SATURN\Sgl\lib
SET C_INCLUDE_PATH=C:\dev\SATURN\include;C:\dev\SATURN\Sgl\include;
C:\dev\SATURN\Sgl\Inc
SET CPLUS_INCLUDE_PATH=C:\dev\SATURN\include\cxx;C:\Gamez\SATURN\include;
C:\dev\SATURN\Sgl\include;C:\dev\SATURN\Sgl\inc
REM Set TMPDIR to point to a ramdisk if you have one
SET TMPDIR=C:\TMP

Now, open a MS-DOS command line, head for the directory and type
SETENV.BAT. This sets up the enviroment for the GCC compiller.

The final test. Enter GCC in the command line. It should report "gcc.exe: No
input files". If not, review all the steps and check the box next to this text.

Let's compile somethiing, then:
Head to the Sgl/Samples directory via that command line and pick one
directory, for example Akira. Type MAKE, and it will provably give you
"make.exe: Nothing to be done for `all'". Type MAKE CLEAN, and you'll erase
any intermediate files and outputs (it's safe to do so, no source code is lost).
Write MAKE again and you'll see the compile process.

gcc ../common/cinit.c -O2 -m2 -g -c -I../../inc -o ../common/cinit.o
gcc main.c -O2 -m2 -g -c -I../../inc -o main.o
gcc aki_ashi.c -O2 -m2 -g -c -I../../inc -o aki_ashi.o
gcc aki_dou.c -O2 -m2 -g -c -I../../inc -o aki_dou.o
gcc aki_kao.c -O2 -m2 -g -c -I../../inc -o aki_kao.o
gcc aki_kata.c -O2 -m2 -g -c -I../../inc -o aki_kata.o
gcc aki_ude.c -O2 -m2 -g -c -I../../inc -o aki_ude.o
gcc aki_walk.c -O2 -m2 -g -c -I../../inc -o aki_walk.o
gcc workarea.c -O2 -m2 -g -c -I../../inc -o workarea.o
gcc -m2 -L../../lib -Xlinker -T../common/sl.lnk -Xlinker -Map -Xlinker sl.map –

X linker -e -Xlinker ___Start -nostartfiles ../common/cinit.o main.o aki_ashi.o a
ki_dou.o aki_kao.o aki_kata.o aki_ude.o aki_walk.o workarea.o -lsgl -o sl.coff
objcopy -O binary sl.coff sl.bin

Voilá. You compiled your first C SGL sample. I hope. Check all the steps if not.

The next lesson will speak about your first Saturn C SGL program.

"Out of environment space"
error

No problem. On the SETENV.BAT
directory, create a shortcut to
C:\Windows \Command.com. Then
chose Proprietes, select the Memory
tab and set the Initial Enviroment from
Auto to 1024. If you go to the Programs
tab and add SETENV.BAT in the Batch
File, by double clicking in the shortcut
you created, you enter the GCC
enviroment automagicly.

